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Symbol
Ed(f)

N

R
Xy
S(£)

At
x(t)
x(t,£)
x(t,£)

§<t,fu,m)

xs(t)

y(t)

DEFINITION OF SYMBOLS

Definition

Relative quantization error for the derivative of the frequency
component (f)

Average quantization error for the derivative of the frequency
component (f)

Average quantization error for atmospheric crossed-beam data
Average quantization error for band-limited white noise
Frequency

Lower frequency

Upper frequency

Integer of the quantity in the parentheses

(2m+l) representing the number of digital samples used in the
sample reduction method

Number of quantization bits in a digital converter
Total number of scale units in a digital converter
Cross—correlation between x(t) and y(t)

Spectral density function

‘Time

Increment in time

Time history

Frequency component of x(t) with frequency f

An equivalent to x(t,f) defined by equation (22)

An estimated value of x(t £ ) by the sample reduction method
using (2m+l) samples

Time history x(t) measured in scale units

Time history

iv
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Greek Symbols

e (m)

€(m,fu)

emin(m’fu)

Definition

Average percentage of overall reduction of quantization error
using (2m+1) samples for any spectral density s(f)

Same as for e(m) except for frequency component (fu)

The minimum percentage of reduction of quantization error
for frequency component fu using (2mt+l) samples.

Angle between X(t; fu) and the abscissa
rms of quantization error in x(t)

mean of quantization error in x(t)
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Section I

INTRODUCTION

Quantization errors occur in the process of converting a continuous analog
time history to a discrete digital time history by an electronic device. Two
factors cause quantization errors. The first is the imperfection of electronic
devices which read the analog time history and subsequently process the sample
into digital form. In this analysis we shall ignore this factor by assuming
that we have an ideal analog-to-digital converter with respect to the electronics.
The second factor is the finite size of the scale unit which is pre-fixed as the
smallest increment for recording digital samples. The problem of finite size of
a scale unit is usually attacked by making the scale unit as small as possible,
i,e., increasing the number of digits in quantization. This requires expensive

equipment, and the maximum number of digital bits is limited for any digitizer.

In the digital analysis ‘of atmospheric crossed-beam data for remote
wind speed and turbulence detection, (ref. 1), it was shown that the signal
time (first) derivatives rather than the signals themselves are needed for
calculating the cross—correlation function, Furthermore, the signal-to-noise
ratio of the crossed-beam data is usually very low; say 0.3 or less (ref. 2
and 3). It follows that the signal-to-noise ratio in the signal-time
derivatives, which are evaluated by a finite difference scheme, will be even
smaller. The quantization error for a digital time history has been discussed

by Bendat and Piersol (ref. 4).

The purpose of this report is two-fold. First, Section II presents an
estimate of the quantization error for the first derivative of digital time
histories, which is made based on the results in reference 4. A specific
application to crossed-beam data will be given. Based on this estimate,
the minimum required bits of quantization of the time history can be determined.
Secondly, we shall deal with the problem concerning how the quantization error
can be reduced further without increasing the number of digital bits. One

solution is to employ the sample reduction method., Using sample reduction,
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a given number, say m, of consecutive digital samples of a time history is
added to form a new time history with only 1/m of the original number of
digital samples. 1In contrast with the usual central moving average, the

sample reduction may be considered as a jumping average.

In Section III we shall develop a theoretical basis and then establish

some practical criteria for employing the sample reduction method to reduce

quantization error.
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Section 11

QUANTIZATION ERRORS FROM
ANALOG/DIGITAL CONVERSION

In this section we shall deal mainly with the quantization error in the
first derivative of the digital time history. However, before we can do this,
we must know the quantization error in the digital time history, since the

latter error will be carried over to the former.

2.1 QUANTIZATION ERROR IN THE DIGITAL TIME HISTORY

Consider an analog time history x(t), which is plotted in Figure 2-1,
with time as the abscissa and prefixed scale units as the ordinmate. Now
consider taking a digital sample of the time history at an arbitrary time
t. The exact value of the sample is indicated graphically by point A on
the curve. This point happens to lie just below the midpoint line between two
consecutive scale units (j+1) and (j+2). Hence, it is registered by the
digital converter as having (j+l1) scale units. The difference between the
exact analog value AC and the approximate, rounded digital value EE; as
indicated by the segment KE; is called the quantization error (due to any
analeg/digital conversion). This error may vary from zero to a maximum of

one-half scale unit.

Here we are interested in random time histories, so the mean and rms of
the error are of primary interest. To obtain these two average quantities,
the statistical distribution of point A must be known. For most time histories
it would seem safe to assume that point A will be found, with equal probability,
between two consecutive scale units, Thus, we shall make the assumption that
the probability density of the time history x(t) over any scale unit is uniform.
It is also recalled that any point laying above (or below) the midpoint between
two scale units is considered to belong to the upper (or‘lower) scale unit.

These two statements can be expressed mathematically as

Prob (x)
and Prob (x)

1, -0.5 < x £ 0.5 scale unit and

0, otherwise s
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With this probability, the mean value of the quantization error M _ q will be
9

ux,q = J—mProb x) d&x =0 , (24)

since the probability density is symmetric about x = 0. The variance is given
by

2

g =
X,q

“ 2 1 .
J—m(x - ux,q) Prob (x) dx = 12 (scale unit) (2B)

So, the standard deviation (or rms) of the quantization error for this digital

1
= | —— s
Ux,q |12‘= 0.29 scale unit (3)

This might be considered as rms noise added to the time history during the

time history is

analog/digital conversion.

2.2 QUANTIZATION ERROR FOR FIRST DERIVATIVE OF DIGITAL TIME HISTORY

We shall now consider the error in the calculation of the first derivative
of the digital time history with the presence of the rms quantization error
as given by equation (3). Let the time interval in the data sampling be At.
Consider two consecutive sampling times, t and t + At (see Figure 2-2).
The rms quantization errors for x(t) and x(t + At) will both be Ox,q = 0.29

scale unit. Without these quantization errors the correct first derivative

(within the accuracy of the finite difference) would be given by

dx (t) _ x(t + At) - x(t) _ Ax (4)
dt Co" (t + At) - t At

With the quantization errors, the derivative would be, in the rms sense,

dz(t) _ [x(t + A) i-cx,q] - [x(t) i'cx,q] _bx, Zox
dt qe' (t +At) - t T At — At (5)
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It is logical, then, to define a measure for relative quantization error for

the derivative of the time history Ed as followé:

(%xft}) o (&th!)
dt dt | or

Eq = ( xit!) (6)
That is, Ed is the absolute value of the percentage error with respect to the

correct derivative of the time history.

Substitution of equations (4) and (5) into (6) yields

20 20
Eo= —%04 _ _X,q_ 1 7
a” Tx e (@)
dt

cor

Let the total number of scale units of the A/D converter be denoted by NS.
Now convert the time history x(t) to a new signal xs(t) measured in scale

units, i.e.,
x(t) = Nsxs(t) (8)

Clearly,
xs(t).i 1

With the above transformation, equation (7) can be rewritten as

E - x!g

d TN at | de

26 de(t)>‘l
9)

This shows that the quantization error is inversély proportional to the

sampling interval At. The larger the sampling interval, the smaller the

error. However, the maximum allowable sampling interval is related to

the upper cut-off frequency fu in the time histofy by Nyquist's criterion

or Shannon's sampling theorem (ref. 4),
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1
(At)max T2 fu (10

However, in practical application, the maximum sampling interval will be one

half of the above value. Thus, using the maximum sampling interval, equation
(9) becomes '

8 £ 0, o [ (E) -1
s ]
Eq N dt ; 1)
S
which is the minimum percentage error possible.
dxs(t)
In the above expression, the value of the derivative T is a function

of time and may range from -~ to +®. Thus, the above error expression is use-
less unless some kind of average is taken over the value of the derivative.

Such an averaging may be accomplished as follows:

The time history xs(t) can be expressed by a Fourier series expansion.

Consider Fourier sine (or cosine) components of xs(t) at frequency £, i.e.,

xs(t,f) = gin(2r ft) (12)

The time dexrivative of this component is

dxs(t,f)
—qr = 2 f cos(2n ft)

The average of the absolute value of the derivative over the entire time history
is equal to

dx (t,f) T |dx (t,f)
—S ____} = 1lim = j =
dt Torco T o dt dt
1
4f R
_ 1 U scale unit
= 1 [o 2 £ cos(2 ft) dt = 4f time unit
4f

(13)
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Thus, an "average" quantization error of the derivative of the Fourier series

component at frequency f is given by

u %x q 2 fu I q
Ed(f) = . " TI N 2 (14)
dxs(t,f) S
NS dt

The above estimate of quantization error is valid for a particular frequency
component only. Hence, the next logical step is to obtain an estimate of error

averaged over the frequency range of the time history of interest.

If the time history is a bandwidth-limited white noise, then the "average"
quantization error for the first derivatives of signals over the frequency

range is

i

1 " fu 0x q fu
Ed,w = E:—:—EI Jf Ed(f) df = (f <~fH) N log EE“ (15)

Actually, the power spectrum function of atmospheric, turbulent-wind

fluctuations closely follows a minus five-thirds power law in the frequency

range of interest for crossed-beam data. If one takes this actual power spectrum
function into consideration, then a more realistic and accurate average

quantization error of the first derivative of atmospheric data would be

jfu 513 1/2

( ) Ed(f) df
_ f
E - —1
¢ ) df
1
2. £ [£,726 g /6
_ X,q ‘u 1 u
- 5N 1/6 176 (16)
S f - f
u 1
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The reason for using the "square root" of the power spectrum function as a
weighting factor instead of the power spectrum function itself is due to the
fact that the power spectrum is proportional to the mean "square" wvalue of

the time history.

Equations (15) and (16) indicate that the mean quantization error of the
first derivative of the time history is related to the upper and lower cutoff
frequencies, the rms value of the quantization error of signals, the power
spectrum function of the time history, and the total number of scale units
in the digital converter. The first two parameters, fu and fl’ are set ac-—
cording to the expected spectrum function of signals, and can be regarded as
known parameters. The third parameter, O q’ is already given by equation (3).

b = ==
Hence, i1f one assigns a desired tolerable percentage error for E or E s

d,atm d,w
then equation (16) or equation (15) can be used to estimate a minimum total
number of scale units, (NS) _+ A required minimum number of bits for quanti-

min
zation of the time history, Nb’ could in turn be determined by the use of (NS)

by the following relation min

N, -1 N
2° <y <2” (17)

min

It should be noted that in the above analysis the time history x(t) is assumed
to be pure signal without any noise, other than that due to quantization.
Therefofe, equation (16) cannot be applied without some modifications to
crossed-beam data where the noise-to-signal ratio is quite high. The parameter

in equation (16) which needs to be modified is N_, which should be scaled down

-8’
by the ratioc of the square root of the peak cross—correlation of time histories
x(t) and y(t), max(ny), to the total range of quantization, Ax. This may be

written as

max(R_ ) max(R_) lo._ o
(N.) =N, —2 -y £y X (18)
S'modified S Ax S Gx Oy Ax ? .

10
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where O and cy are rms values of the time histories x(t) and y(t), respectively.

Substituting the modified NS for the original one in equation (16) yields

e =516 _. -5/6

20 g £
E - —%s9 Xy Ax £ 1 u
d,atm 5 NS max(ny) lcx Uy u fu1/6 _ fl1/6

19

The above equation could now be used to determine the minimum total number
of scale units (NS) , for atmospheric crossed-beam data.
min

Example
The upper and lower cutoff frequencies are set to be

fu = 4 cps
and
fl = 0.01 cps.
The ratio Ax ) Ax
c_ o ox °’
Xy

assuming Ox = Oy' This ratio is usually called the dynamic range of a recording

system. Assume this ratio has a value of four (convervative). The ratio max?R )
for the atmospheric crossed-beam data is usually no less than 5, (ref. 1). xy
Finally, let the averagé quantization error E; atm be less than 10 perceént.
b
Substituting the above numerical values into equation (19) and solving for NS’
one obtains the required minimum total number of scale units as follows:
-5/6 ,=5/6,
2 * 0.29 (0.01 —4 )
W pin = 5ot N5t 4 ~ = 2450
S’min 5 0.1 (41/6 _ 0.011/6)
By use of equation (17) and the above estimated (NS)min one finds that the
minimum required number of bits of quantization is
N =12, (20)

b

11
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Section III

REDUCTION OF QUANTIZATION ERROR BY THE
SAMPLE REDUCTION METHOD

Section II has shown that quantization errors are always associated with
digital time histories. The errors are directly proportional to the size of
scale unit used, or inversely proportional to the total number of scale units
in the digital converter. §Since any digital converter has a maximum number
of scale units, the minimum quantization error is fixed for any digital

converter.

In this section we shall develop a theory to further reduce this minimum

quantization error by means of the sample reduction method.

Consider an analog time history of a random process x(t), and_let fl and
fu be the lower and upper frequencies of interest, respectively. The usual
sampling criterion, such as Nyquist's criteria (ref. 4), depends on the upper
frequency of the time history. The same consideration will be followed here,
and for the time being we shall concentrate attention on the upper frequency
component of x(t) only. This component will be denoted by x(t, fu). Later
in the analysis, the whole spectrum density function of x(t) will be taken
into consideration. Specifically, x(t, fu) may be expressed by a sine wave

with frequency fu as
x(t, fu) = gin (27 fu,t) (21

The time derivative of this component will fluctuate between -1 and +1.

Since it is the absolute value of the derivative which affects quantization
erfors, and since there is interest only in the average effect of quantiza-
tion errors in the evaluation of time derivatives, we shall replace‘;(t, fu)
by an equivalent straight line, ;(t, fu); the slope of which is equal to the
average of the absolute value of the time derivatives of x(t, fu). That is
?x(t, fu)

a1t -t (22)

=(t, £)

12
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where the over bar stands for temporal average. Now evaluate

dx(t, f,)‘ _ lim Ti dx(t, f ) i
dt T o dt
1
= % 4 fu 27 £ cos (2w £ t) dt = 4 £
o u u u
4 £
u

(23)

Hence,

A segment of this line is plotted, in Figure 3-1, over a time interval that
will be regarded as the analog time history of interest. We will now convert
the continuous x(t, fu) into digital samples and then show how the sample re-

duction method may reduce quantization errors involved.

Consider taking a digital sample at time t (see Figure 3-1). The exact
value of Ekt, fu) is indicated by Point A on the straight line, In this figure,
j-1, j, j+l1, etc., are the prefixed digital scale unit marks. TFor convenience
of discussion the mid-point mark between two consecuitive scale units are
indicated as j-1/2, j+1/2, etc. Since Point A is shown between the mid-point
mark j+1/2 and j scale unit, its value will be recorded in digital form as
j scale units. The quantization error due to the finite size of scale unit

is then given by the fraction of a scale unit, i.e., KEYEE:

To apply the sample reduction method to reduce the error KEVEE; more
digital samples in the vicinity of the sampling time t are needed. Denote
the points of intersection between ;kt, fu)’ j, j+1/2, and j+1, respectively,
by C, F, and B. Also denote the points E and D on each side of Point A along -
;Kt, fu) at a distance FB from Point A. Finally, denote the point G on

x(t, fu) such that AG = AF. The times corresponding to points A to .G are

13
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specified in Figure 3-1. Note first that the largest time interval around t
for applying the sample reduction can not exceed the largest permissible sampling
interval (At)max, which, in turn, is determined by the upper frequency fu through
the following relationship.
) = (25)
max 4 fu

Before proving that (At)max is also the only suitable time interval to apply
sample reduction, observe from Figure 3-1 how a shorter time interval than
(At)max may result. Suppose many digital samples between tl" and t2" are
taken. Since exact values of all these samples in analog form lie between

j and j+1/2, they will all be recorded as j scale units. Thus, application
of the sample reduction method over the interval between t." and t

1 2
does not reduce quantization errors. This observation serves to indicate that

" apparently
the time interval for applying the sample reduction can not be too small either.

We shall now show that the sample reduction method applied over the time

interval At = t, - tl will yield a consistent estimate of the exact value of

Point A, i.e., ®(t, fu). Referring to Figure 3-1, we have, by definition,

and

t-—t=t—t=']é"At. (26)

gan =L =1 _1_ .,
t -t At u
2 1
or
1
At =5 = (an) (27)
u max

15
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This last equation simply states that the time interval we intend to use for
applying the sample reduction happens to be the maximum permissible sampling
interval. Next, take (Zm+l) equally spaced digital samples between t. and t,.

1 2
Specifically, these samples are taken at times

- i-m-1) AL
t; = t+ (i-m-1) 50 (28)

where i = 1, 2, ..., 2m, 2m+l, Clearly, every digital sample within the interval
ty <ty :_tz" will be rgcorded as having j scale units. On the other hand, every
sample within the interval t2" St st will be recorded as having j+1 scale

units. Therefore, the estimated value of x(t, fu) by the sample reduction method,

denoted by ;kt, fu’ m), will be given by

t -t
o e 1 2 1
x(t, fu’ m) = - Int At S
2m
t ""t"
+ | Int -Q—ZE—Z— + 1| (5+1)) scale umits, (29)
2m

where the symbol Int ( ) is employed to indicate that only the integer part of
the number within parentheses has been used. As the number of digital samples

taken in the interval (tl’ t2) becomes infinitely large, i.e., (2mtl)>« , the

ratio between these two terms

- approaches asymptotically the ratio between the two distances, FE and FD. Thus

as m»o, equation (29) can be written as

~

x(t, £, mow) = -ﬁ_-%- [FE § + FD (j+1)] scale units (30)

16
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Since, by definition,

AD = AE = FB = FC, (31)
we have
FE = AB, FD = AC, and ED = BC. (32)

Substituting equations (32) into (30) yields

x(t, £, w) = L [AB j + AC (§41)] scale units. (33)
BC

On the other hand, the exact wvalue of the analog time history at time t,

x(t, fu), can also be expressed in terms of fraction of scale units as

x(t, £) =31 += 1[G+ - 3]

&l &l

={1-2) 5 +2 g
BC BC

It

:%;[Kg-j + KE-(j+l)] scale units {34)
BC

Comparing equations (33) and (34) then shows that
';(t: fu’ m_>°°) = X(t’ fu) (35)

This means that if we apply the sample reduction method by taking an infinitely
large number of equally spaced digital samples over a time interval to 1/(4 fu),
then the quantization error may be reduced as desired. In statistical termi-

nology, the estimator (defined by equation (29)) is then said to be consistent.

17
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Next, we will show that the time interval 1/(4 f ) used in the above analysis
is also the only one that will yield a consistent estimate of x(t f ) We have
observed that applying the sample reduction method does not reduce any quantization
error if the time interval At = (t1 , 2") is used. It remains now to consider a
larger time interval, i.e., (tz" - tl") < At < (At)max'. Let us express the time

interval within this range as

2
= (At)max - 2 A%, (36)

where 0 < Azt < -;'-'(t2 - tZ")' Using equation (36), one obtains

> 1

x(t, £ , m>x) — 5 [(AB - Azt'csc 8) j
u BC - 2 A"t ¢csc ©

+ (KE-— Azt esc 6) (§+1)]

1
- 2
BC - 2 At ¢csc ©

It

{Ej + AC (j+1) - (25+1) A%t csc e}

# x(t, fu) in general

It

s 37)

N

x(t, fu) only when x(t, fu) =

where 6 = tan—l(4 fu)' The above equation shows that no matter how large m

may be, the estimated value by the sample reduction method, in general, never
approaches the exact value Elt, fu) when Azt # 0. Nevertheless, it is important
to see that the estimated value X(t, fu, m) will be no less accurate than the
original digital sample at time t even for At < (At)max.
In actual applications, the number of digital samples (2m+l), taken over

(At)max, will always be finite, so quantization errors can be reduced only

18
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partially by the sample reduction method. We would like to estimate next how
much quantization error is eliminated by the estimator (equation (29)) for a
given m using At = (At)max. As a matter of fact, the only error involved in the
estimator when compared to the exact value of x(t, fu) is due to truncatio? of
decimal parts by the integer operator Int ( ). The maximum uncertainty (Ax)m

ax
in equation (29) can be found for the simplest case by setting j=0, i.e.,

- t, - t,)"
2 1 2 " b2
x(t, fu’ m) = Py Int ———ZET——- + 1} , (38)
2m
since the value of j is immaterial. Thus,
(bx) . = max [x(t, £) - x(t, £, )]
- " - "
IS N I b Bl 1 IR b Sl 2
2+l At At
2m 2m
-1 scale unit (39)
2m+l ?

while the rms quantization error in the original digital sample is 1/ Jif
scale unit (equation (3)). Hence, the minimum percentage of reduction of

quantization errors by the sample reduction method using (2m+l) equally

spaced digital samples with At = A i is given by
u
__l._\ iy
_ 2mtl 7 _ V12 o
emin(m’ fu) = {1 - = Ix 100% = (1 55119 x 100% (40)

——

o,

Actually, a more accurate estimate of the amount of quantization error reduction
by the sample reduction method can be made by assuming that the probability density
of Point A is uniform between two consecutive scale units. With this assumption,

which is indeed quite realistic, the rms value of truncation in equation (29),
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[A - Int (4)] ,

will be equal to 1/{3 instead of 1 as shown in equation (39). So the "average"
percentage of reduction of quantization errors by the sample reduction method,

denoted by ¢ (m, £), will be

i 1
_ 2m+l 3 . om-1
e(m, fﬁ) = |1 - —1 | % 1007 = ool X 100% . (41)

———

12

It should be recalled that so far all the estimates were derived based only
on the upper frequency component of the actual analog time history. Therefore,
we need to take into consideration the power spectral density function S(f) of
x(t) as a weighting function. The correct amount of weighting required for
equatica (41) may be derived as follows. Without loss of generality, -let us
fegard the time history x(t) as having N discrete frequency componentS,Ai.e.,

#

N
x(t) = ) x(t) , (42)
i=1

with

xi(t)=aisin(2fit+¢i),fif < f <f,

i i+l u

. . . . .th
where ¢i is the random phase shift associated with i~ frequency component.

The corresponding power spectrum density is given by

S(£) = a’ 8(f - £)), (43)

1

I 182

i
2,
i

where §(f) is Dirac's delta function. Recall that it is the average of the
absolute value of the slope of each frequency component that will affect the

application of the sample reduction method. Hence, consider the average
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dxi(t)
i 4 a; fi (44)
Furthermore, from equation (43), we see that
£+ &L
i 2 1 2
S(f) df = = a, R
AF 2 i
£ -
i 2

which implies that a, = clS(fi); ¢ being some constant. Thus, equation (44)

i
becomes
dxi(t)
It =4 ¢ fids(fi) (45)

Therefore, the suitable weighting function should be fJS(f). The "average"
percentage of "overall" reduction of quantization errors e¢(m) in the original
analog time history x(t) using the sample reduction method (using 2m+l'samples

over At = 1/4 fu) will be given by

£

u
J st(f) € (m, £) df
£

T(m) = —= - x 100%
u
£, Jf Js®) af
1
£
u
£[S(E) af
£
_Zm-1 "1 o
oy x 100% (46)
£ fs(f) df
u
£

In particular, for a bandwidth-limited white noise; i.e., S(f) = constant for

fl < £ i-fu; equation (22) reduces to
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f
= 2m-1 1
e(m) = Py (% + ==} x 50% 47)
For a time'history with a spectrum of the form S(f) = constant x f_z,
equation (42) becomes
f
log 2
2m-1 £
x 100% (48)

s(m) = 2m+], (%u
. )

Finally, for a spectrum with extremely narrow bandwidth equation (42) reduces

to approximately

T(m) = g‘:ﬁi 100% (49)

as would be expected by considering equation (21).

Numerical examples: For fu/fl = 10, we have from equation (48)

e(m) = 21% form= 35
= 23% for m »> o« (50)
for fu/f = 5, we have
e(m) = 32.8% form =5
= 36% for m + ., (51)

These examples serve to show that little benefit can be obtained for m > 5.
Therefore, for practical applications, we need only sample about ten times
higher than normally required (i.e., 40 fu samples/sec) to use the sample

reduction method.

It is interesting to compare the efficiency of the saﬁple reduction method

with that of increasing digital bits to reduce quantization errors. For an
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increase of two digital bits, a scale unit is reduced in size to one-fourth.
Hence, the quantization error will be reduced by (1 - 1/4) or 75 percent,
regardless of the spectrum function of the analog time history. Comparing this
efficiency with .32.8 percent from equation (51), the method of increasing digital
bits is more effective than the sample reduc;ion method. However, the sample
reduction method is not intended to replace any possible increase of gquantization
bits, but rather devised for further reduction of quantization bits, but rather
devised for further reduction of quantization errors when the highest possible

number of digital bits of a given digitizer is used.
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Section IV

CONCLUSIONS AND RECOMMENDATIONS

An estimate of the average quantization error of the first derivative of
the time history has been derived. This estimate of error is further specified
for atmospheric crossed-beam data. The analysis indicates that 12-bit quanti-
zation of the atmospheric crossed~beam data might be necessary in order to
obtain an average quantization error of.the first derivative of the crossed-

beam data below 10 percent.

A theory has been developed on the application of the sample reduction
method to reduce quantization errors resulting from digitization of random
time histories. Quantization errors occur because of the finite size of scale

units used.

This analysis shows that the sample reduction method will give a statis-
tically consistent estimate of the exact value of the associated analog time
history if the time history is of a single frequency f and if the time interval
used for averaging of digital samples is set to be 1/¢4 f). For a time history
with a spectrum density S(f) within the frequency range from fl to fu and
using (2m+l) equally spaced digital samples taken over a time interval of
1/4 fu’ the average percentage of overall reduction in quantization errors
by the sample reduction method is given by equation (46).

From the above estimate, it is suggested for actual applications of the
sample reduction method that the analog time history of interest should be
digitized at a sampling interval of 1/40 fu and then averaged over every
ten, consecutive, digital samples. By doing so, an approximate 30 percent
reduction in quantization errors may be expected for the commonly encountered

spectrum density of the form f—z.
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